Ask Question
6 February, 02:31

Among the contestants in a competition are 38 women and 22 men. if 5 winners are randomly selected, what is the probability that they are all men

+1
Answers (1)
  1. 6 February, 02:52
    0
    There are two ways to solve this problem:

    (1) The basic way:

    Total number of contestants = 38 + 22 = 60 contestant

    Probability that 1 winner is a man = 22/60

    Probability that 2 winners are men = (22/60) * (21/59)

    Probability that 3 winners are men = (22/60) * (21/59) * (20/58)

    Probability that 4 winners are men = (22/60) * (21/59) * (20/58) * (19/57)

    Probability that 5 winners are men = (22/60) * (21/59) * (20/58) * (19/57) * (18/56)

    Doing the calculation, we will find that:

    probability that 5 winners are men = 0.0048217

    (2) The combination way:

    Total number of contestants = 38 + 22 = 60

    probability that 5 winners are men = C (22, 5) / C (60, 5)

    where:

    C (n, r) = n! / ((n - r) ! * r!)

    (The exclamation mark refers to the factorial)

    Now, we will substitute:

    C (22,5) = (22) ! / ((22-5) ! * (5) !) = 26334

    C (60,5) = (60) ! / ((60-5) ! * (5) !) = 5461512

    Substitute to get the probability as follows:

    probability that 5 winners are men = C (22, 5) / C (60, 5)

    = (26334) / (5461512)

    = 0.0048217
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Among the contestants in a competition are 38 women and 22 men. if 5 winners are randomly selected, what is the probability that they are ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers