Ask Question
30 November, 18:15

If f (x) = (5x^3 - 4) ^4, then what is f ' (x) ?

a. 20x^2 (x^3 - 4) ^3

b. 20x^8

c. 4 (5x^3 - 4) ^3 (15x^2)

d. 4 (2x^3 - 4) ^4

+1
Answers (2)
  1. 30 November, 18:22
    0
    f (x) = (5x^3 - 4) ^4

    f' (x) = 4 (5x^3 - 4) d (5x^3 - 4) / dx

    = 4 (5x^3 - 4) (5*3x^2)

    = 4 (5x^3 - 4) (15x^2)

    so ans is c.
  2. 30 November, 18:41
    0
    If f (x) = (5x^3 - 4) ^4

    derivative of the outer * derivative of the inner

    f' (x) = 4 (5x^3 - 4) ^3 * 3 (5x^2)

    = 4 (5x^3 - 4) ^3 * (15x^2)

    =4*3*5 x^2 (5x^3 - 4) ^3

    =60 x^2 * (5x^3 - 4) ^3

    Choice C
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “If f (x) = (5x^3 - 4) ^4, then what is f ' (x) ? a. 20x^2 (x^3 - 4) ^3 b. 20x^8 c. 4 (5x^3 - 4) ^3 (15x^2) d. 4 (2x^3 - 4) ^4 ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers