Ask Question
10 September, 00:43

An article claims that teenagers on average will check their cellphones 150 times in one day. A student decides to test this claim using the hypotheses H0: μ = 150 vs. Ha: μ ≠ 150. A 95% confidence interval for the true mean is found to be (154.3, 167.5). On the basis of this interval, what should the student conclude at α=0.05?

+4
Answers (1)
  1. 10 September, 01:04
    0
    Answer with explanation:

    The given set of hypothesis:

    H0: μ = 150 vs. Ha: μ ≠ 150.

    A 95% confidence interval for the true mean is found to be (154.3, 167.5).

    [A 95% confidence interval interprets that a person can be 95% confident that the true population mean lies in it.]

    But μ = 150 does not lie in the above interval (154.3, 167.5).

    It means the null hypothesis gets rejected at α=0.05.

    Thus, The student should conclude they have sufficient evidence to rejecte the article's claim that teenagers on average will check their cellphones 150 times in one day at α=0.05 (Significance).
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “An article claims that teenagers on average will check their cellphones 150 times in one day. A student decides to test this claim using ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers