Ask Question
15 October, 14:28

Sin^2 (45+A) + sin^2 (45-A) = 1 prove

+1
Answers (2)
  1. 15 October, 14:30
    0
    Step-by-step explanation:

    We know that sinA=cos (90-A)

    and, sin²A + cos²A = 1

    Now, here sin (45+A) = cos {90 - (45+A) }

    = cos (45-A)

    cos² (45-A) + sin² (45-A) = 1

    by Applying (sin²A + cos²A = 1)
  2. 15 October, 14:50
    0
    sin (45+w) = sin (45) cos (a) + cos (45) sin (a)

    sin (45-a) = sin (45) cos (a) - cos (45) sin (a)

    sin2 (45+a) = sin2 (45) cos2 (a) + 2sin (45) cos (a) cos (45) sin (a) + cos2 (45) sin2 (a)

    sin2 (45+a) = sina (45) cosa (w) - 2sin (45) cos (a) cos (45) sin (a) + cos2 (45) sin2 (a)

    sin2 (45+a) + sin2 (45-a) = 2sin2 (45) cos2 (a) + 2cos2 (45) sin2 (a)

    sin (45) = cos (45) = (√2) / 2

    sin2 (45) = cos2 (45) = (1/2)

    sin2 (45+a) + sin2 (45-a) = 2 (1/2) cos2 (a) + 2 (1/2) sin2 (a)

    sin2 (45+a) + sin2 (45-a) = cos2 (a) + sin2 (a) = 1
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Sin^2 (45+A) + sin^2 (45-A) = 1 prove ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers