Ask Question

Let z1 = a1 + b1i, z2 = a2 + b2i, and z3 = a3 + b3i. Prove the folowing using algebra or by showing with vectors.

a. z1 + z2 = z2 + z1

b. z1 + (z2 + z3) = (z1 + z2) + z3

+5
Answers (1)
  1. 9 June, 00:18
    0
    a) z1 + z2 = z2 + z1 ... proved.

    b) z1 + (z2 + z3) = (z1+z2) + z3 ... proved.

    Step-by-step explanation:

    It is given that there are three vectors z1 = a1 + ib1, z2 = a2 + ib2 and z3 = a3 + ib3. Now, we have to prove (a) z1 + z2 = z2 + z1 and (b) z1 + (z2 + z3) = (z1 + z2) + z3.

    (a) z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i (b1 + b2) {Adding the real and imaginary parts separately}

    Again, z2 + z1 = (a2 + ib2) + (a1 + ib1) = (a2 + a1) + i (b2 + b1) {Adding the real and imaginary parts separately}

    Hence, z1 + z2 = z2 + z1 {Since, (a1 + a2) = (a2 + a1) and (b1 + b2) = (b2 + b1) }

    (b) z1 + (z2 + z3) = [a1 + ib1] + [ (a2 + a3) + i (b2 + b3) ] = (a1 + a2 + a3) + i (b1 + b2+b3) {Adding the real and imaginary parts separately}

    Again, (z1+z2) + z3 = [ (a1+a2) + i (b1+b2) ]+[a3+ib3] = (a1 + a2 + a3) + i (b1 + b2+b3) {Adding the real and imaginary parts separately}

    Hence, z1 + (z2 + z3) = (z1+z2) + z3 proved.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Let z1 = a1 + b1i, z2 = a2 + b2i, and z3 = a3 + b3i. Prove the folowing using algebra or by showing with vectors. a. z1 + z2 = z2 + z1 b. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers