Ask Question
4 January, 22:50

Rewrite 2 cos 75 degrees sin 75 degrees a double angle identity

+2
Answers (2)
  1. 4 January, 23:03
    0
    It follows from the double angle identity for sine,

    sin (2x) = 2 sin (x) cos (x),

    that

    2 cos (75º) sin (75º) = sin (2•75º) = sin (150º)

    Alternatively, recall that

    sin (x + y) = sin (x) cos (y) + cos (x) sin (y)

    sin (x - y) = sin (x) cos (y) - cos (x) sin (y)

    Adding these together gives

    sin (x + y) + sin (x - y) = 2 sin (x) cos (y)

    Set x = y = 75º; then

    2 sin (75º) cos (75º) = sin (75º + 75º) + sin (75º - 75º)

    2 sin (75º) cos (75º) = sin (150º)
  2. 4 January, 23:17
    0
    2 cos 75°. Sin 75° = Sin 150°

    Notice:

    Sin 150 º = Sin 30°

    See that Sin 75° = Cos 15°

    Cos 75° = Sin 15°

    So:

    2Cos 75°. Sin 75° = 2 Sin 15°Cos°15 = Sin 30°
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Rewrite 2 cos 75 degrees sin 75 degrees a double angle identity ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers