Ask Question
24 October, 09:37

Susan has 10 pockets and 44 dollar bills. She wants to arrange the money so that there are a different number of dollars in each pocket. Can she do it? Explain.

+4
Answers (1)
  1. 24 October, 10:01
    0
    No

    Step-by-step explanation:

    The answer is no because no pocket can be empty and there isn't enough money to satisfy the condition. At least, one dollar must be stored in each pocket but the number (integer) of dollars in each pocket is different.

    Let's store the minimum amount of dollars in the pockets while satisfying the condition. Place 1 dollar in the first pocket. The second pocket must have 2 dollars (it can't be 1 dollar, it must be a different number of dollars). The third pocket must have third dollars.

    Repeating this process, the ninth pocket must have 9 dollars. At this moment, we have arranged 1+2+3+4+5+6+7+8+9=45 dollars in our pockets. But we only had 44 dollars! Plus, the tenth pocket is still empty.

    If you store more dollars on the first, second, nth pockets, you will just run out of money more quickly than in our process above. so it's impossible to arrange the money in such way.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Susan has 10 pockets and 44 dollar bills. She wants to arrange the money so that there are a different number of dollars in each pocket. ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers