Ask Question
26 May, 21:38

How to integrate sec^3x

+2
Answers (1)
  1. 26 May, 21:41
    0
    1 Use Integration by Parts on / int / sec^{3}x /, dx∫sec

    3

    xdx.

    Let u=/sec{x}u=secx, dv=/sec^{2}xdv=sec

    2

    x, du=/sec{x}/tan{x} /, dxdu=secxtanxdx, v=/tan{x}v=tanx

    2 Substitute the above into uv-/int v /, duuv-∫vdu.

    /sec{x}/tan{x}-/int / tan^{2}x/sec{x} /, dxsecxtanx-∫tan

    2

    xsecxdx

    3 Use Pythagorean Identities: / tan^{2}x=/sec^{2}x-1tan

    2

    x=sec

    2

    x-1.

    /sec{x}/tan{x}-/int (/sec^{2}x-1) / sec{x} /, dxsecxtanx-∫ (sec

    2

    x-1) secxdx

    4 Expand (/sec^{2}x-1) / sec{x} (sec

    2

    x-1) secx.

    /sec{x}/tan{x}-/int / sec^{3}x-/sec{x} /, dxsecxtanx-∫sec

    3

    x-secxdx

    5 Use Sum Rule: / int f (x) + g (x) /, dx=/int f (x) /, dx+/int g (x) /, dx∫f (x) + g (x) dx=∫f (x) dx+∫g (x) dx.

    /sec{x}/tan{x}-/int / sec^{3}x /, dx+/int / sec{x} /, dxsecxtanx-∫sec

    3

    xdx+∫secxdx

    6 Set it as equal to the original integral / int / sec^{3}x /, dx∫sec

    3

    xdx.

    /int / sec^{3}x /, dx=/sec{x}/tan{x}-/int / sec^{3}x /, dx+/int / sec{x} /, dx∫sec

    3

    xdx=secxtanx-∫sec

    3

    xdx+∫secxdx

    7 Add / int / sec^{3}x /, dx∫sec

    3

    xdx to both sides.

    /int / sec^{3}x /, dx+/int / sec^{3}x /, dx=/sec{x}/tan{x}+/int / sec{x} /, dx∫sec

    3

    xdx+∫sec

    3

    xdx=secxtanx+∫secxdx

    8 Simplify / int / sec^{3}x /, dx+/int / sec^{3}x /, dx∫sec

    3

    xdx+∫sec

    3

    xdx to 2/int / sec^{3}x /, dx2∫sec

    3

    xdx.

    2/int / sec^{3}x /, dx=/sec{x}/tan{x}+/int / sec{x} /, dx2∫sec

    3

    xdx=secxtanx+∫secxdx

    9 Divide both sides by 22.

    /int / sec^{3}x /, dx=/frac{/sec{x}/tan{x}+/int / sec{x} /, dx}{2}∫sec

    3

    xdx=

    2



    secxtanx+∫secxdx



    10 Original integral solved.

    /frac{/sec{x}/tan{x}+/int / sec{x} /, dx}{2}

    2



    secxtanx+∫secxdx



    11 Use Trigonometric Integration: the integral of / sec{x}secx is / ln{ (/sec{x}+/tan{x}) }ln (secx+tanx).

    /frac{/sec{x}/tan{x}+/ln{ (/sec{x}+/tan{x}) }}{2}

    2



    secxtanx+ln (secx+tanx)



    12 Add constant.

    /frac{/sec{x}/tan{x}+/ln{ (/sec{x}+/tan{x}) }}{2}+C

    2



    secxtanx+ln (secx+tanx)

    + C
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “How to integrate sec^3x ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers