Ask Question
17 October, 11:30

Solve the equation. dy dx = ay + b cy + d, where a, b, c, and d are constants. (assume a ≠ 0 and ay + b ≠ 0.)

+4
Answers (1)
  1. 17 October, 11:41
    0
    It solves it in x. the solution for y includes heavy use of the product log function.

    dy/dx = ay + b/cy + d

    (cy + d / ay + b) dy = dx

    ∫ (cy + d / ay + b) dy = x (t) + C

    Into solving the integral, integration by parts followed by u substitution and another integration by parts.

    ∫ (cy + d / ay + b) dy

    u = cy + d dv = dy/ay + b

    du = c dy v = ln I ay + b l / a

    Then, use u substitution for the new integral

    u = ay + b

    du = a dy

    ∫ ln l ay + b I dy = ∫ ln IuI / a du = 1/a ∫ ln luI du

    Integrating the natural log includes thus far another integration by parts

    r = ln IuI ds = du

    dr = du / u (s) = du

    ∫ ln IuI / du = u ln IuI - ∫ du = u ln IuI - ∫ a dy = (ay + b) ln Iay + bl - ay

    The original integral of expression

    ∫ (cy + d / ay + b) dy = cy + d/a ln lay+bl - c/a² [ (ay+b) ln lay+bl - ay]

    Then simplify

    ∫ (cy + d / ay + b) dy = cy + d/a ln lay+bl - c/a²[ (ay+b) ln lay+bl - ay]

    = a (cy + d) / a² ln lay+bl - c (ay+b) / a²ln lay+bl + c/a² ay

    = cay + ad - cay - cb / a² ln lay+bl + cay/a²

    = ad - cb/a²ln lay+bl + cy/a

    The final answer will be

    x (t) + C = ad - cb/a² ln lay+bl + cy/a

    x (t) = ad - cb/a² ln lay+bl + cy/a + k
Know the Answer?
Not Sure About the Answer?
Find an answer to your question 👍 “Solve the equation. dy dx = ay + b cy + d, where a, b, c, and d are constants. (assume a ≠ 0 and ay + b ≠ 0.) ...” in 📗 Mathematics if the answers seem to be not correct or there’s no answer. Try a smart search to find answers to similar questions.
Search for Other Answers